Transformation formula for exponential sums involving fourier coefficients of modular forms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Coefficients of Modular Forms

These notes describe some conjectures and results related to the distribution of Fourier coefficients of modular forms. This is a rough draft and these notes should forever be considered incomplete.

متن کامل

Oscillations of Fourier Coefficients of Modular Forms

a(p) = 2p~ @ ) cos 0(p). Since we know the truth of the Ramanujan-Petersson conjecture, it follows that the 0(p)'s are real. Inspired by the Sato-Tate conjecture for elliptic curves, Serre [14] conjectured that the 0(p)'s are uniformly distributed in the interval [0, rc] with respect to the 1 measure -sin2OdO. Following Serre, we shall refer to this as the Sato-Tate r~ conjecture, there being n...

متن کامل

Divisors of Fourier coefficients of modular forms

Let d(n) denote the number of divisors of n. In this paper, we study the average value of d(a(p)), where p is a prime and a(p) is the p-th Fourier coefficient of a normalized Hecke eigenform of weight k ≥ 2 for Γ0(N) having rational integer Fourier coefficients.

متن کامل

A Relation between Fourier Coefficients of Holomorphic Cusp Forms and Exponential Sums

We consider certain specific exponential sums related to holomorphic cusp forms, give a reformulation for the Lehmer conjecture and prove that certain exponential sums of Fourier coefficients of holomorphic cusp forms contain information on other similar non-overlapping exponential sums. Also, we prove an Omega result for short sums of Fourier coefficients.

متن کامل

On Sums of Fourier Coefficients of Cusp Forms

in case f(n) is the Fourier coefficient of a holomorphic or non-holomorphic cusp form. We shall first deal with the latter case, which is more complicated. Let as usual {λj = κj + 14} ∪ {0} be the discrete spectrum of the non-Euclidean Laplacian acting on SL(2,Z) –automorphic forms. Further let ρj(n) denote the n-th Fourier coefficient of the Maass wave form φj(z) corresponding to the eigenvalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Indian Academy of Sciences - Section A

سال: 1993

ISSN: 0370-0089

DOI: 10.1007/bf02837893